5

技術論文

Technical Paper

マルテンサイト系析出硬化型ステンレス鋼の 機械的特性と組織因子に及ぼす Ni, AIの影響

高林宏之*, 岡本晃彦*

Effect of Ni and Al Content on Mechanical Properties and Structure Factors of Precipitation Hardening Martensitic Stainless Steel Hiroyuki Takabayashi and Akihiko Okamoto

Synopsis

PH13-8Mo belongs to the group of the precipitation hardening martensitic stainless steel combining good impact value with exceptionally high strength. Since this material is strengthen by precipitation of NiAl intermetallics, it is easy to think that Ni and Al content have effects on the mechanical properties and microstructure of this material. Therefore, there are several reports investigating each mechanical property. However, it is not clear how Ni and Al content affect on structure factors such as microstructure, and how the variation of microstructures affects on each mechanical property. In this study, we investigated the effect of Ni and Al content on the microstructure and mechanical properties such as tensile strength, proof strength and Charpy impact value.

As a result, it was cleared that Ni and Al content have effects on the content of NiAl intermetallics, the amount of solid solution Ni and retained austenite. Then the tensile strength is influenced by the amount of NiAl intermetallics and retained austenite. On the other hand, the DBTT(ductile-brittle transition temperature) is influenced by the solid solution Ni content, and the Charpy impact value is influenced by the amount of NiAl and retained austenite.

マルテンサイト系析出硬化型ステンレス鋼 PH13-8Mo は Fig. 1 に見られるように強度と靭性のバランスに優れ る材料として知られている¹⁾. このため,構造材料とし て優れており,従来は航空機用途で用いられることが多 い.近年では,蒸気タービンブレードにも利用され,そ の用途範囲を広げている²⁾. また PH13-8Mo 鋼はるフェ ライト相を形成しないため, SUS630 に比較して組織均 質性,機械的特性のT方向特性(圧延方向に対して垂直 な方向)にも優れており,耐食性にも優れた材料となっ ている³⁾. しかしながら,マルテンサイト変態点が室温 付近であるため,処理条件によっては残留オーステナイ トの量に差がでるため,特性ばらつきの要因となり易い. このため使用に際しては固溶化処理後,サブゼロ処理を 行うことが望ましいと考えられる.また,サブゼロ処理 後の時効処理では,マルテンサイト母相に,B2構造を 有する β -NiAl 金属間化合物, $M_{23}C_6$ 型および M_2X 型の 炭化物が形成されることが報告されている^{4).5)}.

この内, 主要な強化相は NiAl であり, Ni, Al 量が機 械的特性に大きな影響を及ぼすことは容易に想像し得る. しかしながら, 従来の報告では引張強さ, 0.2% 耐力,

2015年5月20日受付

*大同特殊鋼㈱研究開発本部(Daido Corporate Research & Development Center, Daido Steel Co., Ltd.)

シャルピー衝撃値(以降,衝撃値という)などの個々の 機械的特性に及ぼす Ni, Al 量の影響に関する報告はな されているものの, Ni, Al 量に応じて生じる組織変化 と機械的特性の相関関係は必ずしも明確とはなっていな い⁷⁾. そこで本研究では,マルテンサイト系析出硬化型 ステンレス鋼の PH13-8Mo をベースに機械的特性とその 組織因子に及ぼす Ni, Al 添加量の影響を明確にするこ とを目的とした.

Fig. 1. Comparison of various precipitation hardening stainless steels after aging treatment on tensile strength and Charpy impact value.

2. 実験方法

Table 1 記載の Steel B をベース組成として Ni, Al 量 を変動させた Steel A ~ F の 6 鋼種を真空溶解し, 直径 130 mm の 50 kg 鋼塊を作製した. なお, Steel A, B は PH13-8Mo の AMS 規格範囲内の組成である. 鋼塊は, 1200 ℃にて 16 時間保持の均質化処理を施した後, 熱間 鍛造にて直径 20 mm の棒形状に加工した. 必要寸法に 切断し, 各機械試験, 組織調査に供した. また, 評価前 の熱処理条件を Fig. 2 に示す.

Table 1. Chemical composition of experimental steels

(mass%).

Steel	С	Ni	Cr	Мо	AI	Fe
А	0.04	7.72	12.5	2.17	1.11	bal.
В	0.04	8.40	12.5	2.17	1.24	bal.
С	0.04	9.10	12.5	2.17	1.28	bal.
D	0.04	9.78	12.5	2.16	1.32	bal.
Е	0.04	8.42	12.5	2.17	1.40	bal.
F	0.04	9.78	12.6	2.16	1.17	bal.

Fig. 2. Schematic diagram of heat treatment.

固溶化処理として 950 ℃にて 2.5 時間保持後,水冷し, 直ぐに - 30 ℃にて 3 時間保持のサブゼロ処理を行い, 最後に 500 ~ 550 ℃にて 4 時間保持後に空冷の時効処理 を行った.

組織予測にはThermo-Calc (Ver. S, Fe data base ver. 6) を用い、組織観察には光学顕微鏡観察、走査型電子 顕微鏡 (SEM: Scanning Electron Microscope), エネル ギー分散型 X 線分析 (EDX: Energy Dispersive X-ray spectrometry)を用いている.変態点の測定には、示差 膨張測定により特定を行った.また、組織同定には、10 vol% アセチルアセトン - 1 mass% 塩化テトラメチルア ンモニウム - メタノール(10%AA solution)を用いてい る. 電解抽出は, 電流密度 0.25 mA/cm² にて 4 時間保持 し, その後 ϕ 0.1 μ m 孔径のフィルターを用いて行った. 残渣を乾燥させた後、秤量による抽出率定量と X 線結 晶構造解析 (XRD: X-ray diffraction), SEM-EDX によ る残渣物の構造および成分解析を実施した. また残留 オーステナイト量の定量には XRD にて、フェライト相 の (200), (211), オーステナイト相の (200), (220), (311)の5面6組での解析を行い、その平均値を用い た. 硬さは、析出物の影響を避けるためロックウェル C 法を用いて, JIS Z 2245 に準拠して実施した. 機械的特 性はいずれも室温にて ASTM 規格に準拠して評価した. 引張試験片は試験部直径 φ 12.5 mm, 標点間距離 G.L. =50 mm, シャルピー衝撃試験には 10 mm 角型 2 mmV ノッチ試験片を用いている. なお, 延性脆性遷移温度 (DBTT: Ductile-Brittle Transition Temperature)の調査時 には、シャルピー衝撃試験にて温度を - 196~200 ℃ の範囲で変化させ、前述と同形状の試験片を用いて評価 を実施した. 試験後の破面観察には SEM を用いている.

3. 組織同定および組織予測

Fig. 3 に Steel B の Thermo-Calc による計算状態図を示 す. Fig. 3 より, 1200 ℃以上では, δ フェライト相が形 成されており, 均質化処理温度が 1200 ℃よりも高くなる と δ 相が形成される可能性が示唆される. また, 900 ℃ 以下で $M_{23}C_6$ 型炭化物が少量析出し, さらに 650 ℃以下 で強化相の NiAl が析出するものと推測される. そこで, 本研究では均質化処理条件として 1200 ℃を, 固溶化処 理は 950 ℃を選定した. また, 処理後の組織に δ フェラ イト相や炭化物の残存がないことを確認した.

Thermo-Calc software.

変態点測定の結果を試験条件の模式図と共に Fig. 4(a) に示す.測定には固溶化処理材を供し,再度 950 ℃まで 加熱し,オーステナイト単相とした後,冷却によりマ ルテンサイト変態開始温度 Ms = 185 ℃,変態完了温度 Mf= 9 ℃の結果を得た.また,上記のマルテンサイト変 態完了後もさらに -140 ℃まで冷却した後に,加熱を行 いオーステナイト化温度も調査した.オーステナイト変 態開始温度 As = 573 ℃,変態完了温度 Af = 718 ℃の 結果を得た.これより,本検討の時効温度 500 ~ 550 ℃ ではマルテンサイトからオーステナイトへの逆変態は生

じないものと考えられる. 実際に Steel B の固溶化処理 後、サブゼロ処理後、時効処理後の組織調査を行った 結果を模式図として Fig. 4(b) に示す. 固溶化処理後の 状態において、約5 vol%のオーステナイト相が残留し、 サブゼロ処理後には1~2 vol% 程度まで減少する. そ の後、時効処理により逆変態温度以下であるにもかか わらず、オーステナイト相は2~3 vol% 程度まで増加 する傾向が認められた. Fig. 4(c) には Steel B の 540 ℃ 時効処理後のミクロ組織を示した。また、析出相に関す る考察のため、時効処理後の状態において電解抽出によ る析出物の同定を行った結果を Fig. 4(d) に示す. これ より, 固溶化処理時の未固溶炭化物と推定される粗大 な炭化物はなく、約30 nm 程の微細な Cr, Mo 炭化物の 形成が認められた. Fig. 4(e)の XRD の結果を併せて考 慮すると従来報告されている M₂X 型炭化物と推定され る. また, 同時に時効温度域では M₂₃C₆ ではなく M₂X が形成されることが明確となった. この際の抽出量は 0.35 mass% となっており、Thermo-Calc から導出される M23C6型炭化物量の0.78 mass%に比較すると半分程度で あるが、これは炭化物が非常に微細なため全量抽出でき ていない可能性と平衡状態に達していないことが考えら れる.しかし、本研究では炭化物に影響を及ぼすと考え られる C, Cr, Mo 量の変動は行わないため、鋼種間の 比較には影響はないものと判断した.また、NiAlに関 しては、定量が困難なため、Thermo-Calc を用いて時効 温度で平衡状態における NiAl 量を用いて考察を行うこ ととした. これまでの調査から, Ni, Al 量の変動によ り、NiAl 析出量、母相成分変動に伴う残留オーステナ イト量の変化が考えられるが、現状、PH13-8Moの延性 脆性遷移挙動に及ぼす成分,組織の影響に関する報告は 少ない.

以上より, PH13-8Moは, 基本的に主相はマルテン サイト相であるが, Ms 点が室温付近にあるため, 若干 オーステナイト相が残留する. このため, 本研究では, Ni, Al 量変動時の強度特性および衝撃靭性に影響を及 ぼす組織因子として, マルテンサイト成分, 残留オース テナイト量, NiAl 量を考えることとした.

Fig. 4. Transformation temperature of steel B which measured by Formasta (a), schematic diagram of microstructure after each heat treatment (b), microstructure of cross section after aging treatment (c), SEM image and result of EDX (d), and XRD result of extraction of steel B after aging treatment at 450 °C for 4 h with air cooling (e).

4. 結果および考察

4. 1 ミクロ組織

Fig. 5 に Steel B をベースとして Thermo-Calc により 求めた計算状態図を示す. Fig. 5(a) よりオーステナイト 安定化元素である Ni の増量は、 δ フェライト相の形成 温度を上昇させることが分かる. また、900 ℃付近に $M_{23}C_6$ 型炭化物の固溶限、670 ℃付近に NiAl の固溶限 が認められるが、Ni 量変化による変動は認められない. 一方で、Fig. 5(b) よりフェライト安定化元素である Al の増量は、 δ 相形成温度を低下させ、オーステナイト領 域を狭めることが分かる.また、 $M_{23}C_6$ 型炭化物の固溶限には影響しないが、NiAlの固溶限を上昇させる.

以上より、Ni 増量は、オーステナイト相を安定化す ることで、 る相の形成を抑制するものの、炭化物、NiAl の析出量には影響を及ぼさないと考えられる. ただし、 この際、母相中のNi量は増加していくため、Ms 点の 上昇による残留オーステナイトの増加、DBTTの変動を 考慮する必要がある.一方、Al量はNiAl量の律則条件 になっており、Alの増量はそのままNiAlの析出量増加 につながり、NiAlの固溶限も上昇させる. ただし、同 時にオーステナイト相を不安定化させるため、均質化処 理時のδフェライト相の形成には注意を要する. δフェ ライト相の存在は, 偏析を助長し, PH13-8Moの特徴で ある鍛伸方向と垂直方向の機械的特性の差が少ないこと に反するものであり, 極力低減を図る必要がある.

次に、実際に製造した6鋼種のミクロ組織および硬さ

測定結果を Fig. 6 に示す.代表組織として 540 ℃にて 4 時間保持後,空冷による時効処理を施したものを用い た.いずれの鋼種も同様な組織形態を呈しており, *δ*相 はなく,均一なマルテンサイト組織が得られている.一 方で,鋼種により硬さが大きく異なることが分かる.

Fig. 5. Calculated phase diagrams of steel B with Thermo-Calc software with Ni content (a) and Al content (b).

Fig. 6. Microstructure of steel A \sim F after aging treatment at 540 °C for 4 h followed by air cooling.

Fig. 7 に成分から導出される計算 Ms 点と各工程におけ る残留オーステナイト量の変化を XRD 法にて測定した 結果を示す. Ms 点計算には,下記(1)式を用いた⁸.

[]内には,各記載元素の質量%を入力することで Ms点が導出できる.Ms点に及ぼす影響はNiに対し てAlの影響は小さいと考えられる.(1)式を用いて導 出した計算Ms点をFig.7(a)に示す.これに対し,Fig. 7(b)の残留オーステナイト変動では,概ねNi量に相関 が認められるものの,直線近似から若干の乖離がある. また,固溶化処理,サブゼロ処理,時効処理工程間の残 留オーステナイト量の推移をみると,いずれの鋼種も多 少の差はあるものの同様な増減傾向が認められる.Fig. 7(b)の結果を元に,残留オーステナイト量に及ぼすNi, Alの影響について,線形重回帰分析を行い推定式(2) を導出した.

 $\gamma_{RAG}(vol\%) = -30 + 4.97 \text{ Ni} - 6.4 \text{Al}, R = 0.99 \cdots (2)$

なお、Fig. 7(b) にて、サブゼロ処理後の状態に比較し て、時効処理状態では若干ではあるが残留オーステナイ ト量が増加する傾向が認められるが、540 ℃時効処理材 の結果であり As 点よりも低い温度であるため、逆変態 により残留オーステナイト量が増加したとは考え難い、 今のところ、この現象の理由は定かではないが、本研究 の範囲内ではいずれの鋼種においても認められる現象で あることが明確となった。

最後に、時効処理後(540 ℃,4時間保持,空冷)材の電解抽出法による抽出残渣の定量結果をFig.8に示す.いずれの鋼種も概ね抽出率0.35 mass%前後であり、抽出された析出炭化物も25~35 nm程でほぼ一定の大きさであった.このため炭化物はNi,Al量変動による影響を受けないものと判断される.また、この抽出炭化物はいずれの鋼種もFig.2(Steel B)で認められた M_2X 型析出炭化物となっていた. M_2X 型析出炭化物は、拡散速度の遅い時効温度域において準安定的に形成される析出相と推定される.以上より、Ni,Al量変動による炭化物の変化はないことが明確となったため、以降の検討では、炭化物を影響因子から除外して考察を行うこととした.

Ni content (mass%)

Fig. 8. Extraction ratio and extracted carbide size of steel A \sim F after aging treatment at 540 °C for 4 h by 10 %AA solution.

4. 2 時効硬さ

時効温度と時効後硬さの関係を Fig. 9 に示す. Al 増 量によりいずれの条件においても硬さが高くなる. 概ね 0.15 mass%Al の増量で硬さが1 HRC 程高くなることが 分かる. また, Ni 増量により硬さは低下した. これは 残留オーステナイト量の増加によるものと考えられる.

Temperature (°C)

Fig. 9. Rockwell hardness of steel B, D, E, F after aging treatment at 500 ~ 550 °C for 4 h followed by air cooling.

4. 3 機械的特性

Fig. 10 に強度と靱性のバランスが比較的良好な時効 温度3水準(530,540,550℃)における各鋼種の引張 強度,0.2%耐力,衝撃値の結果を示す.Fig.10より, いずれの鋼種においても本時効条件において,引張強 度,0.2%耐力は時効温度の上昇に伴い低下し,衝撃値 は上昇する.時効条件による差よりも,鋼種間で特性に 大きな差が認められ,強度が高いほど,衝撃値は低く なっている.この結果をもとに強度特性と衝撃値の関係 を整理した結果をFig.11に示す.概ね,いずれの鋼種 においても時効条件540℃が最も引張強度,0.2%耐力 と衝撃値のバランスが優れており,また鋼種間比較では Steel B が強度と靱性のバランスに優れることが分かる.

Fig. 10. Mechanical properties of steel A ~ F after aging treatment at 530, 540, 550 °C for 4 h followed by air cooling. Tensile strength (a), 0.2 % proof strength (b) and Charpy impact value (c).

4. 4 引張強度と組織因子

前述の組織同定結果より、時効処理後の組織因子と しては、鋼種により量の多少はあるにせよ、母相マル テンサイト,残留オーステナイト,NiAlが考えられる. M₂X型炭化物に関しては先の調査で鋼種間の変動が少 ないことが明確となったため考慮外とした.この内、強 度特性に寄与すると考えられる残留オーステナイト量, NiAl 量と引張強度の関係性を Fig. 12 に示す. なお, NiAl 量に関しては、Thermo-Calc より導出した時効処理 温度 540 ℃の平衡状態における計算 NiAl 量(mass%) を用いている. Fig. 12より, 概ね残留オーステナイト 量が少なく、NiAl 量が多い成分系で強度が高くなって おり,残留オーステナイト量([y_R], vol%)と計算 NiAl 量([NiAl_{Cale}], mass%) を説明変数として引張強 度(TS: Tensile strength) および 0.2 % 耐力(0.2 % PS: 0.2 % Proof Strength) と組織因子について線形重回帰分 析を行い推定式 (3), (4) を導出した.

 $0.2 \ \% PS (MPa) = 1178 + 60.4 [NiAl_{Calc}] - 14.3 [\gamma_{R}],$ R=0.95(4)

引張強度, 0.2% 耐力ともに, ほぼ同様な傾向にあり, 析出強化相である NiAl の影響が最も大きく, 残留オー ステナイトも影響が認められる.

Fig. 12. Relationship between amount of austenite phase and calculated amount of NiAl.

4. 5 シャルピー衝撃特性と組織因子

衝撃値に影響を及ぼす組織因子としては、前述の強度 特性と同様に残留オーステナイト量、NiAl量が考えられ る.また、マルテンサイト系ステンレス鋼の衝撃靭性に 関しては DBTT が室温付近に存在するため、母相中固溶 成分の影響も考慮する必要がある。特に延性脆性遷移挙 動に Ni が影響を及ぼすことはよく知られている⁹⁾.そこ で、まず検討材質の室温付近温度における衝撃値の推移 を調査した結果を Fig. 13(a) に示す。Fig. 13(b~d) に は、Ni、Al量変動の影響をみるため、Steel A~D (Ni, Al 双方増加時の影響)、Steel B と E (中 Ni 量での Al 量 変動影響)、Steel D と F (高 Ni 量での Al 量変動影響) に区分した図を示す。併せて、試験後の破面状態を観察 した結果を Fig. 14 に示す。

まず, Fig. 13(b) および Fig. 14(a) より, Steel A ~ D にて Ni, Al 双方を増加していく際の変化を見てみると, Steel A に比較して Steel D は DBTT が低温側へ移行し, 高温側の延性破断温度域(100 ~ 200 °C)の衝撃値は低 下することが分かる. 組織上は, Steel A \rightarrow B \rightarrow C \rightarrow D の順に NiAl 量は増え, 固溶 Ni も増加し, 同時に残留 オーステナイトも増えるため, 延性破断温度域の衝撃値 低下は NiAl 量, 残留オーステナイト量の増加によるも のと推定される. また DBTT の変動, 脆性域の衝撃値 改善は固溶 Ni の影響と推定される.

次に, Fig. 13(c) および Fig. 14(b) より, Steel B と E に て中 Ni 量での Al 量変動の影響を見てみると, 延性破断 温度域における衝撃値は全体的に低くなる傾向が認めら れる. 両鋼種は残留オーステナイトも少なく, Ni 量の 変動はないため, 単純に Al 増加に伴い NiAl が増加した 影響と考えられる.

Fig. 13. Charpy impact value of steel A \sim F at -196 \sim 200 $^{\circ}$ C (a) with relationship of steel A, B, C and D (b), steel B and E (c), steel D and F (d).

一方, Fig. 13(d) および Fig. 14(c) より, Steel D と F に て高 Ni 量での Al 量変動の影響を見てみると, DBTT が 低温側に移行し, 顕著に室温の衝撃値が改善しているこ とが分かる.この際, 脆性破断温度域(室温以下)およ び延性破断温度域(100~200℃)の双方で衝撃値の向 上が認められる.これは Steel D → F の際に, Al が低減 するため NiAl 析出量が減り,高温側の衝撃値が上昇す るとともに,母相中の Ni 量が増加したため DBTT の低 温側への移行,脆性破断温度域の高衝撃値化として表れ たものと考えられる.Steel E → B と Steel D → F で双方 Al 量の変化としては 0.16, 0.15 mass% と同程度である が,前者は Ni 添加量が高く,残留オーステナイトが多 いため,固溶 Ni 増加による DBTT 低温化,極低温域の 衝撃値向上の効果が高かったものと考えられる. Fig. 15 には衝撃値に及ぼす Ni 量, NiAl 量, 残留 オーステナイト量の影響を模式的にまとめたものを示 す. 衝撃値における延性脆性遷移挙動は, Ni 量により DBTT が変化し, NiAl 量および残留オーステナイト量 により延性破断域の衝撃値が低下する.

以上の結果から,残留オーステナイト量([γ_R], vol%)と計算 NiAl 量([NiAl_{Calc}], mass%)を説明変数 として,線形重回帰分析を行い,比較的高い相関関係の 下記の(5)式を得た.

衝撃値_{RT} (J/cm²) = 68.3 - 7.0 [NiAl_{Calc}] - 3.1 [
$$\gamma_R$$
],
R = 0.99 · · · · · · · · · · · · · · · (5)

50 μm

Fig. 14. SEM micrographs of fracture surface after Charpy impact test of steel A and D (a), B and E (b), D and F (c).

式(5)より,双方ともに負の影響があり,影響度も 同程度にあることが分かる.なお,シャルピー衝撃試験 の場合,延性脆性遷移挙動変化の影響もあるため,本来 は脆性温度域,延性温度域ごとに影響因子を考慮する必 要があると考えられる.特に室温より高い温度側での利 用を考える場合には,残留オーステナイトの増加による 衝撃値低下なども考慮しておく必要がある.例えば本検 討の範囲である200℃にて,衝撃値の線形重回帰分析を 行うと下記(6)式のようになる.

衝撃値
$$_{200 C}$$
 (J/cm²) = 70.2 - 5.2[NiAl_{Calc}] - 0.8[γ_{R}],
R = 0.96 · · · · · · · · · · · · · · · (6)

基本的には大きく変化しないが,200℃では残留オース テナイトより NiAl の影響が若干大きくなることが分かる. これは、この温度域では延性破断であり、ボイド起点とな る NiAl の量の影響が大きくなるものと考えられる.

Fig. 15. Schematic diagram of effect of Ni and Al content on ductile-brittle transition behavior.

5. 結 言

Ni, Al 量を変動させた際の機械的特性と組織因子の 関係を調査し、以下の結果を得た。

- Ni, Al量の変動は,残留オーステナイト量, NiAl量 に影響を及ぼし,炭化物の種類,形態には影響を与 えない.
- 2)本研究で検討した成分系において残留オーステナイ ト量は、Ni, Al量で整理できる.
- 3) 引張特性, 0.2 %耐力は NiAl量と残留オーステナイ ト量を変動変数として相関性が高く, NiAl量は正の 影響,残留オーステナイト量は負の影響として整理 できる.
- 4)衝撃値における延性脆性遷移挙動は、Ni量により DBTTが変化し、NiAl量および残留オーステナイト 量により延性破断域の衝撃値が低下する。

- ステンレス協会編:ステンレス鋼便覧 第3版 1995,645.
- 2) IFM2008, "Development of high strength PH-stainless steel for steam turbine forged long blade", 466-471.
- Aerospace structural materials handbook "Ferrous alloys / PH13-8Mo".
- Materials Science and Engineering A 394 (2005), 285-295.
- V. Seetharaman, M. Sundraraman and R. Krishnan, Materials Science and Engineering, 47(1981), 1.
- P. W. Hochanadel, C. V. Robino, G. R. Edwards and M. J. Cieslak: Metallurgical and Materials Transaction A, 25 (1994), 789.
- 7) 多田光一郎: 電気製鋼, 56(1985), 140.
- 8)石田清仁:日本金属学会講演概要,115,(1994), 329
- H. E. McGannon: The Making, Shaping and Treating of Steel, 9th edition., US Steel, (1971).